
PYTHON3 & DJANGO
INRODUCTION TO

M a r t i n a P i v a r n í k o v á

Python is a widely used general-
purpose, high level programming
language. It was initially designed
by Guido van Rossum in 1991 and
developed by Python Software
Foundation. It was mainly developed
for emphasis on code readability,
and its syntax allows programmers
to express concepts in fewer lines
of code.

It is used for:
• web development (server-side),
• software development,
• mathematics,
• system scripting.

Most used programming languages of 2019

1. Java
2. C
3. Python

“https://www.tutorialspoint.com/python3/index.htm

SYNTAX
Single ('), double (") and triple (''' or """) quotes to denote string literals

Extension .py

Blocks of code – line indentation

Hash sign (#) that is not inside a string literal begins a comment

No semicolons at the end of line

Python keywords

and def exec if not return
assert del finally import or try
break elif for in pass while
class else from is print with
continue except global lambda raise yield

print(s) – output to console

• Variables - containers for storing data values.
• Unlike other programming languages, Python has no command for declaring a variable
• A variable is created the moment you first assign a value to it
• Python has five standard data types −

• Numbers
• int (10) , long (535633629843L), float (15.20), complex (3.14j)

• String
• str = 'Hello World!'

• print(str) # Prints complete string
• print(str[0]) # Prints first character of the string
• print(str[2:5]) # Prints characters starting from 3rd to 5th
• print(str[2:]) # Prints string starting from 3rd character
• print(str * 2) # Prints string two times
• print(str + "TEST“) # Prints concatenated string

VARIABLES

• List (array)

• list = ['abcd', 786 , 2.23, 'john', 70.2]
• tinylist = [123, 'john']

• print(list) # Prints complete list
• print(list[0]) # Prints first element of the list
• print(list[1:3]) # Prints elements starting from 2nd till 3rd
• print(list[2:]) # Prints elements starting from 3rd element
• print(tinylist * 2) # Prints list two times
• print(list[0::2]) # Prints every 2nd element from 0
• print(list + tinylist) # Prints concatenated lists

VARIABLES

• Tuple
• The main differences between lists and tuples are:

Lists are enclosed in brackets ([]) and their elements and size
can be changed, while tuples are enclosed in parentheses (())
and cannot be updated. Tuples can be thought of as read-only lists

• tuple = ('abcd', 786 , 2.23, 'john', 70.2)

VARIABLES

• Dictionary
• They work like associative arrays and consist of key-value pairs.

Dictionaries are enclosed by curly braces ({ }) and values
can be assigned and accessed using square braces ([])

• dict = {}
• dict['one'] = "This is one"
• dict[2] = "This is two"

• tinydict = {'name': 'john','code':6734, 'dept': 'sales'}

• print(dict['one']) # Prints value for 'one' key
• print(dict[2]) # Prints value for 2 key
• print(tinydict) # Prints complete dictionary
• print(tinydict.keys()) # Prints all the keys
• print(tinydict.values()) # Prints all the values

VARIABLES

pip install [package] -–proxy 10.255.47.66:3128
__
import [package]
or
from [package] import [module]
or
import [package] as [name]

MODULES

• Arithmetic Operators (a=10, b=20)
BASIC OPERATORS

Operator Description Example

+ Addition Adds values on either side of the operator. a + b = 30

- Subtraction Subtracts right hand operand from left hand operand. a – b = -10

* Multiplication Multiplies values on either side of the operator a * b = 200

/ Division Divides left hand operand by right hand operand b / a = 2

% Modulus Divides left hand operand by right hand operand and
returns remainder b % a = 0

** Exponent Performs exponential (power) calculation on operators a**b =10 to the power 20

// Floor Division

The division of operands where the result is the quotient
in which the digits after the decimal point are removed.
But if one of the operands is negative, the result is
floored, i.e., rounded away from zero (towards negative
infinity) −

9//2 = 4 and 9.0//2.0 = 4.0, -11//3
= -4, -11.0//3 = -4.0

• Comparison Operators (a=10, b=20)
BASIC OPERATORS

Operator Description Example

== If the values of two operands are equal, then the condition becomes true. (a == b) is not true.

!= If values of two operands are not equal, then condition becomes true. (a != b) is true.

<> If values of two operands are not equal, then condition becomes true. (a <> b) is true. This is
similar to != operator.

> If the value of left operand is greater than the value of right operand,
then condition becomes true. (a > b) is not true.

< If the value of left operand is less than the value of right operand,
then condition becomes true. (a < b) is true.

>= If the value of left operand is greater than or equal to the value of
right operand, then condition becomes true. (a >= b) is not true.

<= If the value of left operand is less than or equal to the value of right
operand, then condition becomes true. (a <= b) is true.

• Logical operators
BASIC OPERATORS

Operator Description Example

and Logical AND If both the operands are true then condition becomes true. (a and b) is true.

or Logical OR If any of the two operands are non-zero then condition becomes true. (a or b) is true.

not Logical NOT Used to reverse the logical state of its operand. Not(a and b) is false.

• Membership operators

Operator Description Example

in Evaluates to true if it finds a variable in the specified sequence and
false otherwise.

x in y, here in results in a 1
if x is a member of sequence y.

not in Evaluates to true if it does not finds a variable in the specified
sequence and false otherwise.

x not in y, here not in results
in a 1 if x is not a member of
sequence y.

• Identity operators
BASIC OPERATORS

Operator Description Example

is Evaluates to true if the variables on either side of the operator point
to the same object and false otherwise.

x is y, here is results in 1 if
id(x) equals id(y).

is not Evaluates to false if the variables on either side of the operator point
to the same object and true otherwise.

x is not y, here is not results
in 1 if id(x) is not equal to
id(y).

• If statements
DECISION MAKING

Statement & Description
if statements
An if statement consists of a boolean expression followed by one or
more statements.
if expression:

statement(s)
if...else statements
An if statement can be followed by an optional else statement,
which executes when the boolean expression is FALSE.
if expression:

statement(s)
else:

statement(s)
nested if statements
You can use one if or else if statement inside another if or else
if statement(s).
if expression1:

statement(s)
if expression2:

statement(s)
elif expression3:

statement(s)
elif expression4:

statement(s)
else:

statement(s)
else:

statement(s)

• Identity operators
LOOPS

Operator Syntax

while while expression:
statement(s)

for

for iterating_var in sequence:
statements(s)

for letter in 'Python': # First Example
print('Current Letter :', letter)

fruits = ['banana', 'apple', 'mango']
for fruit in fruits: # Second Example

print('Current fruit :', fruit)

Iterating by Sequence index

fruits = ['banana', 'apple', 'mango']
for index in range(len(fruits)):

print('Current fruit :', fruits[index])

A regular expression is a special sequence of characters
that helps you match or find other strings or sets of strings,
using a specialized syntax held in a pattern. Using module re.

REGULAR
EXPRESSIONS

a, X, 9, <
ordinary characters just match themselves exactly.

\S
matches any non-whitespace character.

. (a period)
matches any single character except newline '\n'

\t, \n, \r
tab, newline, return

\w
matches a "word" character: a letter or digit or
underbar [a-zA-Z0-9_].

\d
decimal digit [0-9]

\W
matches any non-word character.

^
matches start of the string

\b
boundary between word and non-word

$
match the end of the string

\s
matches a single whitespace character -- space,
newline, return, tab

\
inhibit the "specialness" of a character.

Example.
pattern = re.compile("(201[0-9]|202[0-9]|203[0-9]|204[0-9])(1[0-2]|0[1-9])(3[0-1]|[0-2][1-9]|[1-2]0)")

if pattern.match(item):…

try:
You do your operations here
......................

except [ExceptionI]:
If there is ExceptionI, then execute this block.

except [ExceptionII]:
If there is ExceptionII, then execute this block.

except:
If there is any exception, then execute this block.
......................

finally:
This part will be always executed

__

raise [Exception [, args [, traceback]]]

EXCEPTIONS

• A function is a block of organized, reusable code that is used to perform a single,
related action. Functions provide better modularity for your application and
a high degree of code reusing.

• Defining a Function
• Function blocks begin with the keyword def followed by
• the function name and parentheses (()).
• Any input parameters or arguments should be placed within these parentheses.

You can also define parameters inside these parentheses.
• The code block within every function starts with a colon (:) and is indented.
• The statement return [expression] exits a function, optionally

passing back an expression to the caller. A return statement
with no arguments is the same as return None.

def functionname(parameters): #default parameters – e.g (name,age=35)
"function_docstring“
function_suite
return [expression]

[result =] functionname(param)

FUNCTIONS

• Variables that are defined inside a function body have a local scope,
and those defined outside have a global scope.

• total = 0 # This is global variable.
• # Function definition is here
• def sum(arg1, arg2):
• # Add both the parameters and return them."
• total = arg1 + arg2; # Here total is local variable.
• print ("Inside the function local total : ", total)
• return total

• # Now you can call sum function
• sum(10, 20)
• print ("Outside the function global total : ", total)

Result:
• Inside the function local total : 30
• Outside the function global total : 0

GLOBAL VS LOCAL
VARIABLES

DJANGO
• open source web application framework

• Architecture Model-view-controller

• Originally: to manage several news-oriented sites

• In June 2005, it was released publicly under the open source BSD license

• Main advantage: easy creation of complex, database-driven web applications

• "Do Not Repeat Yourself” - DRY

• The core of the framework contains an object-relational mapper, which is a mediator

between the data model (defined by the Python class) and the relational database

• built-in template system

Thanks!
Any questions?

