
P. J. Safarik University

Faculty of Science

REPLACING HANDWRITTEN
SIGNATURES WITH OPEN
ELECTRONIC SIGNATURE

SOFTWARE
BACHELOR’S THESIS

Field of Study: Applied Informatics
Institute: Institute of Computer Science
Tutor: RNDr. Viliam Kačala

Košice 2020
Jakub Ďuraš

Acknowledgments

I want to thank my supervisor RNDr. Viliam Kačala for his contin-
uous feedback and patience with my questions and late submissions.
I would also like to acknowledge help received from RNDr. JUDr.
Pavol Sokol, PhD. and prof. RNDr. Gabriel Semanišin, PhD. Fi-
nally, I would like to thank my family and friends who contributed
in various ways to my thesis.

P. J. Šafárik University in Košice
Faculty of Science

THESIS ASSIGNMENT

Name and Surname: Jakub Ďuraš
Study programme: Applied Informatics (Single degree study, bachelor I. deg.,

external form)
Field of Study: 18. - Computer Science
Type of Thesis: Bachelor thesis
Language of Thesis: English
Secondary language: Slovak

Title: Replacing handwritten signatures with open electronic signature software

Title SK: Náhrada vlastnoručných podpisov otvoreným softvérom na elektronické
podpisovanie

Aims: 1. Explore the principles and legal status of electronic signatures.
2. Review existing software and propose and develop open-source, cross-
platform, and user-friendly platform for electronic document signing.
3. Provide information and a way to create signatures compliant with eIDAS
Regulation (Regulation No 910⁄2014).

References: [1] MASON, Stephen, 2017. Electronic Signatures in Law: Fourth
Edition. London: University of London. ISBN 978-1-911507-01-7.
Available at: https://humanities-digital-library.org/index.php/hdl/catalog/view/
electronicsignatures/1/86-1
[2] PAAR, Christof and Pelzl, Jan, 2009. Understanding Cryptography
- A Textbook for Students and Practitioner. Berlin: Springer. ISBN
978-3-642-04100-6
[3] SOMMERVILLE, Ian, 2016. Software Engineering, 10th Edition. Harlow:
Pearson Education. ISBN 978-0-13-394303-0.

Keywords: electronic signature, electronic seal, qualified, open-source, XAdES, PAdES,
CAdES, desktop software

Supervisor: RNDr. Viliam Kačala
Institutes : ÚINF - Institute of Computer Science
Head of Institute: RNDr. Ondrej Krídlo, PhD.
Electronic version available: unlimited

Approved: 10.05.2020 Prof. RNDr. Viliam Geffert, DrSc.
riaditeľ ústavu

Abstrakt

So zmenami v právnom statuse elektronických podpisov vo
svete sa vytvára príležitosť rozšíriť elektronické podpisovanie ako
plnohodnotnú náhradu pre vlastnoručné podpisy. V práci sa venu-
jeme právnym predpokladom relevantným pre EÚ, technologickým
predpokladom, prehľadu v súčasnosti dostupného softvéru a návrhu
vlastnej softvérovej platformy. Výsledkom je otvorená softvérová
platforma pre operačné systémy Windows, macOS a Linux. Po-
mocou aplikácie je možné, v súlade s nariadením eIDAS, pod-
písať a overiť podpis ľubovoľného dokumentu, ktorý má rovnaký
právny účinok ako osvedčený podpis. Naše riešenie podporuje
občianske preukazy Slovenskej Republiky s čipom eID bez akých-
koľvek úprav alebo nastavení, čím sa umožňuje ich využitie mimo
použitia vo webových aplikáciách štátu. Aplikácia nie je viazaná
iba na slovenské eID, ale je pripravená na ďalšie použitie s rôznymi
zariadeniami v rôznych štátoch a ako platforma pre iné druhy pod-
pisov. Súčasťou je aj webová stránka, ktorá okrem možnosti stiah-
nutia softvéru a stručnej dokumentácie poskytuje všeobecné infor-
mácie o elektronických podpisoch. Dôraz je kladený na jednoduchú
rozšíriteľnosť programu vo forme jazykových prekladov, dokumen-
tácie, funkcionality a všeobecných informácií. Prácu je možné ďalej
rožšíriť nepreskúmanými možnosťami podpisovania či zlepšením
flexibility, ktorá nie je na úrovni niektorých zástupcov porovná-
vaného softvéru.

Kľúčové slová: elektronický podpis, elektronická pečať, kvali-
fikovaný, open-source, XAdES, PAdES, CAdES, počítačový softvér

Abstract

With the recent changes in the legal status of electronic signa-
tures in the world, there is an opportunity to expand the use of
electronic signatures as an alternative to handwritten signatures
outside the usual areas. In this work, we devote our attention
to the exploration of the legal preconditions relevant for the EU,
technological preconditions, review of the existing software, and a
proposal of our own software platform. The result is an open soft-
ware platform for operating systems Windows, macOS, and Linux.
Using this application, it is possible, following the eIDAS Regula-
tion, to sign and verify the signature of any document with the legal
effect of an attested signature. Our solution supports ID cards of
the Slovak Republic with the eID chip without any modifications
or settings, which enables use outside the web applications of the
state. The application is not tied only to the Slovak eID but is
ready for further use with various devices in other countries and
as a platform for other types of signatures. There is also a web-
site that, in addition to the possibility of downloading software and
brief documentation, provides general information about electronic
signatures. The emphasis is on the simple extensibility of the pro-
gram via language translations, documentation, functionality, and
general information. The thesis can be further extended with novel
ways of signing or by improving flexibility, which is not completely
up to par with the compared software.

Keywords: electronic signature, electronic seal, qualified, open-
source, XAdES, PAdES, CAdES, desktop software

Contents

Introduction 8

1 Preconditions and theory 9
1.1 Law . 9

1.1.1 Signatures . 9
1.1.2 EU Regulation eIDAS . 10
1.1.3 Software copyright . 11

1.2 Cryptography . 12
1.2.1 Asymmetric cryptography . 12
1.2.2 Hashing and timestamping . 15
1.2.3 PAdES, XAdES, and CAdES 16

2 Review of existing software 18
2.1 Desktop application JSignPdf . 19
2.2 Web application zep.disig.sk . 20
2.3 PDF viewer Adobe Acrobat Reader DC 21
2.4 Commercial application D.PDF Signer 22
2.5 Commercial desktop application Podpisuj.sk 22

3 Results 24
3.1 Desktop software . 24

3.1.1 Usability . 24
3.1.2 Localization . 24
3.1.3 Modularity . 26
3.1.4 Signing backends . 27
3.1.5 Architecture of the main module 30
3.1.6 Testing and automation . 31
3.1.7 Comparison with existing software 32

6

3.2 Website . 33
3.2.1 Downloads . 34
3.2.2 Information and help . 34
3.2.3 Technologies . 35

Conclusion 36

Resumé 37

Appendices 41
A User manual . 42
A.1 Downloading and installing the application 42
A.2 Signing the document . 42
A.3 Verifying of document signature . 43
A.4 Settings . 44

Introduction

Electronic signatures have been around for a while. Their practical usability, however,
is influenced by their legal status and available infrastructure. With the recent changes
to the relevant laws around the world, and in the European Union specifically, they
are seeing increased adoption.

While, specifically in the European Union, electronic signatures seem to be used
relatively extensively in communication with the government, they do not seem to
have been widely adopted in exchanges between individuals or smaller organizations,
which still seem to prefer handwritten signatures. In many cases, however, they may
be impractical for electronic communication, due to the need of a person’s physical
presence or the printing and sending of documents.

Our goal is to explore an accessible way of using electronic signatures. In the be-
ginning, we go over the preconditions that make it a viable alternative to handwritten
signatures. We cover the legal preconditions relevant to the European Union, and
Slovakia in particular. Also, we explain the technical preconditions, focusing on cryp-
tographic concepts like asymmetric cryptography, timestamping, hashing, and stan-
dards that comply with the laws of the European Union. Secondly, we do a review
of the existing software, where we briefly cover several applications that are meant
for basic use. We compare them using several criteria to find out the strengths and
weaknesses of the current implementations and identify a potential gap. Finally, we
devote our attention to our own software’s implementation. We explain the proposed
desktop software and go into details on software engineering aspects. Specifically, we
cover usability, localization, modularity, architecture, testing, and automation. In the
end, we compare it to the existing software and identify possible future improvements.
Another result we focus on is a supporting website and how it helps with the use of
the software, all in a way that is open for extension by the community.

1 Preconditions and theory

There are several preconditions that allow us to consider electronic signatures as an
alternative. Firstly, the current state of the law and recent changes relating to the
use of electronic signatures. Secondly, well-established concepts in cryptography like
asymmetric cryptography or hashing. Lastly, expertise from the field of software
engineering - design, implementation, and maintenance of computer software. We
will concentrate on the first two in relation to the electronic signatures and where
applicable open-source desktop computer software.

1.1 Law

Unless stated otherwise, we are considering law applicable locally in the Slovak Repub-
lic (SR). Its law is greatly influenced by the European Union (EU), being its member
since 2004, and by the rest of the world. We can assume this is at least partially
applicable outside of the SR as well. Our overall view on the global legal status is
shaped by [6]. Subsection 1.1.3 is largely based on Chapters 1, 2, 3, 6, and 7 of [7].

1.1.1 Signatures

Signatures are an essential part of the written legally binding documents like contracts.
They are permanently affixed to the document and are supposed to uniquely identify
the person and its deliberate, informed consent. As can be seen in the Slovak Civil
Code, § 40, a written legal act is valid if signed by the acting person [1]. Our law often
explicitly requires signatures and further clarifies their expected use. For example,
when selling an enterprise, looking at the Commercial Code, § 476, the contract
requires written form and attested signatures of the seller and the buyer [2].

Signature is considered an attested signature1 if it is verified by an authorized third
party. This process is referred to as legalization in Notary Law, § 56, and its purpose

1Translation from "osvedčený podpis" as used in the Slovak law.

9

is to attest information that could form the basis for the exercise of rights or which
could cause legal consequences [3].

Regarding the electronic signatures, law within the EU used to differ, with the
law applicable in the SR being now-repealed Act No. 215/2002 Coll.. This situation
changed with the EU Regulation eIDAS.

1.1.2 EU Regulation eIDAS

With intention to stimulate digital growth by building trust, the EU established reg-
ulation on electronic identification and trust services for electronic transactions in the
internal market (eIDAS). It applies from 1st of July 2016, replaces local law, and
regulates, among other things, electronic signatures and its more specific variants.

Figure 1.1: Relation between electronic, advanced, and qualified signatures.

In general, electronic signature can be represented in different ways (e.g. as an
image, text or other data attached to the document) and they can not be denied in
legal proceedings just because they are in the electronic form [4].

Advanced electronic signatures are a subset of electronic signatures that have to
uniquely link and identify the signature author, be created in a way that is possible
only by them and any changes to the signed document have to be detectable [4].
From the technical point of view, standards PAdES, XAdES, and CAdES specified
by the European Telecommunications Standards Institute (ETSI) comply with these
requirements. We explain why this is the case in Section 1.2.

Qualified electronic signatures (QES) are a subset of advanced electronic signatures
with more specific requirements that can be found in annex 1 of the eIDAS regula-
tion2. In more practical terms, such advanced electronic signatures are created with
a qualified device using a qualified certificate and a qualified trust service. Qualified,

2Available at https://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:

32014R0910\#d1e32-111-1.

10

in this case, means authorized for such use by the legal authorities. These devices,
certificates, and trust services are explicitly listed by the EU. In many cases indirectly
by listing the organization (and its items) from a specific country.

Furthermore, a qualified electronic signature has the legal effect of a handwritten
signature [4] and attested handwritten signatures in the SR.

Mentioned terminology is used when considering a natural person. Legal entities
are able to use electronic seals, which are, from the technical point of view and for
our purposes, identical to electronic signatures.

Overall, electronic signatures are supposed to be, within the EU, interoperable
and transparent alternative to handwritten signatures.

1.1.3 Software copyright

Computer programs and associated materials are historically protected under copy-
right as literary works, and protected authors should be able to authorize or prohibit
certain acts [5].

Such right can be exercised to license the software under either proprietary or
open-source license. Proprietary meaning under the exclusive legal right of the author,
typically also confidential and distributed as a paid product. Open-source meaning
having its source code freely available, typically also distributed for free and without
any liability (the software is provided "as is").

Motivation to license the software under an open-source license can differ, and so do
such licenses. While a proprietary license is usually made specifically for that entity
and its interests, open-source licenses tend to be reused between different authors.
This means that consumers of the software can quickly recognize their rights and
responsibilities if they decide to use, modify, or distribute the software. In general,
we can classify the open-source licenses into two categories: permissive and copyleft.

Copyleft license, in general, requires the user to publish the modified work under
the compatible (free) license. As a result, it forces them to extend the rights they
have received onto others and, in turn, somehow hinder usability in software licensed
under a different license. A popular example of such license is the GNU General Public
License (GPL) and its derivatives like GNU Lesser GPL (LGPL) or GNU Affero GPL
(AGPL).

Permissive licenses, on the other hand, do not have such a requirement in place and
are more suitable for potential commercialization. They typically allow commercial

11

use, modifications, distribution or sublicensing as long as the author is not held liable,
and the original copyright and license are distributed with the software. Often used
permissive licenses are MIT License, Apache License, or BSD License.

It is not uncommon to see hybrid licensing - which means licensing under more
than one license, with one being typically open-source and one proprietary. In this
scenario, users can choose which license they want to use based on their needs.

Figure 1.2: Classification and comparison of software licensing models.

As we have already mentioned, software licenses can influence whether and how it
can be used as a part of different software. Both when we are the ones using someone
else’s software and when someone else is using our software. Generally speaking, the
more open the license is, the more likely it is it will not hinder adoption for legal
reasons. We provide examples of categorized licenses in Figure 1.2.

1.2 Cryptography

Previously mentioned standards PAdES, XAdES, and CAdES define how asymmetric
cryptography, hashing, or timestamping should be used to comply with the stan-
dards. We go over these topics and why they are able to satisfy the requirements
for QES mentioned in the Section 1.1.2. We draw our knowledge in chapters about
cryptographic primitives from the [8] and [9].

1.2.1 Asymmetric cryptography

There are several attributes that make symmetric encryption unsuitable. Let us imag-
ine we are creating a key for each pair of users in our network - imaginary country Isle
of Alices and Bobs - for symmetric encryption and decryption of documents shared
between each Alice and Bob.

12

Secure distribution of keys seems to be feasible when we are adding a new user
to our network. We require each user to personally come and pick up a physical
device that contains pre-generated keys. Changes made after that, however, would
mean we either need to require a periodic personal visit to update the saved keys or
transmission of these keys over some medium, which can be potentially unsafe. Any
new members of the network are unable to participate until other Alices and Bobs
get their updates.

Even if we think we have established a reasonably secure way to do that and we
are willing to wait, we realize the number of keys is quickly increasing with each new
member. With n users, the number of keys is

n · (n − 1)
2

which means that even our little imaginary country with a population of only 70
000 requires roughly 2.5 billion keys. However, since our signature system needs to
be portable, we will need to count also with a population of other countries, and so
the number of keys grows very quickly.

Either party can also lie about not signing the document. Since both have the key
that can be used for encryption, they can sign any document on behalf of the other
party, and there is no way to disprove it if we look at it as a third party.

These issues can be addressed with asymmetric cryptography. In general, we assign
a pair of keys to each person, one of them used for encryption, known as a public key,
another used for decryption, known as a private key. One party can encrypt, and the
other is the only one that can decrypt.

Digital signatures are specific asymmetric cryptography algorithms. The signer
is the only one who possesses the private key used for signing, and others can use
the public key for signature verification. We sign the document, including the other
parties’ signature.

Practical and widely used implementation of this idea is the RSA signature scheme
that relies on the integer factorization problem published in 1978 [10].

In Slovakia, the private key is usually handed over to the user personally, saved
on the ID card. This ID card, together with a card reader, provides an Application
Programming Inteface (API) for safe access, management, and cryptoprocessing. Such
a device is in general called a Hardware Security Module (HSM), and the API relevant

13

for this thesis is PKCS #11 3.
We are left with the problem of public key distribution - even though public-key

schemes do not require a secure channel, they require authenticated channels for the
distribution of the public keys [8].

A common solution is the use of certificates. Certificates are essentially digital
signatures with metadata that can be used to establish the validity of the received
public key before it is used. Distribution of such certificates is the responsibility of
a Certification Authority (CA) - a third party that all users in the network trust. In
the case of the Slovak ID cards, it is Disig - SVK eID Accredited CA, issued by the
National Security Authority4. Such certificates, therefore, reliably uniquely link and
identify the public key owners, as can be seen in Figure 1.35. Ability to do that is the
first requirement for the advanced electronic signatures mentioned in Section 1.1.2.
Commonly used standard for public key certificates is X.5096.

Figure 1.3: Application of digital signature with certificate.

Specific for the EU is online List of The Lists (LOTL) that contains a list with
3PKCS #11 specification available at http://docs.oasis-open.org/pkcs11/pkcs11-base/v2.

40/os/pkcs11-base-v2.40-os.html.
4Translation from "Národný bezpečnostný úrad".
5Created by an unknown author, licensed under the CC BY-SA 3.0 license.
6Specification available under RFC5280 at https://tools.ietf.org/html/rfc5280.

14

trusted service providers for each country. Each member state is obligated to maintain
such list, as can be seen in Article 22 of [4]. From the technical point of view, it is an
XML document that is signed and can be processed automatically.

1.2.2 Hashing and timestamping

It is often useful to map data of arbitrary size to a fixed-length and typically short
set of bits called hash. Function that can be used for it is called hash function.

In cryptography, we are considering only hash functions that can also satisfy these
additional requirements:

1. Deterministic - same input data are always mapped to the same hash.

2. One-way - it should be infeasible to retrieve input data for a given hash.

3. Resistant to collisions - it should be infeasible to find two inputs with the
same hash.

4. Avalanche effect - even small change to the input should lead to significantly
different hash.

In the context of digital documents, we can use such hash function to generate a
hash for the document. This hash can represent a document of any size and is used
during the creation of a digital signature instead of the document itself. Any further
changes to the document will, therefore, lead to a significantly different hash, which
means the digital signature will no longer be valid, and these changes are detected.
This ability is one of the requirements for the advanced electronic signatures from
Section 1.1.2. For this purpose, only hash functions that are reasonably fast can be
used, so that we can utilize them on documents of variable size.

An example of commonly used hash function family is Secure Hash Algorithms
(SHA), with hash functions relevant to this thesis being mainly SHA-27.

A common part of the paper signed documents is the date when they were signed.
Their digital counterpart is PKI-based trusted timestamping - a process of digitally
signing date and time of document creation or modification. No one should be able to
tamper with such timestamp - not even the author of the document. Additionally, we

7SHA-2 specification available in FIPS PUB 180-4 at https://nvlpubs.nist.gov/nistpubs/

FIPS/NIST.FIPS.180-4.pdf.

15

should not be able to choose arbitrary date and time ourselves, but it should represent
the actual time at the signing.

To achieve this, a trusted third party - Timestamping Authority (TSA) - is the
one that will sign the hash of the document together with the current date and
time. This process can be seen in Figure 1.48. Verifying can be done by decrypting
this information using the public key and comparing the hashes. Any attempt at
tampering is therefore detected, which helps to cover requirements for the advanced
electronic signatures from Section 1.1.2.

Figure 1.4: Setting a timestamp via a trusted third party.

The commonly used standard for the Public Key Infrastructure (PKI) based times-
tamping is part of the X.5099.

1.2.3 PAdES, XAdES, and CAdES

Extensions for Portable Document Format (PDF) files, eXtensible Markup Language
(XML) files, and Cryptographic Message Syntax (CMS) signed data for signing using
advanced electronic signatures, as explained in Section 1.1.2, are PAdES, XAdES, and
CAdES, respectively. They are defined in the respective specifications by the ETSI
in [11], [12], and [13].

When using PAdES, signatures are always part of the PDF file itself. This differs
8Schema created by Bart Van den Bosch, licensed under the CC BY-SA 2.0 BE license.
9Specification available under RFC3161 at https://www.ietf.org/rfc/rfc3161.txt.

16

from XAdES, where the signature can be either part of the XML or provided as a
separate file, or CAdES where the signature is always in the form of binary data, and
it is up to the software.

All of them support multiple signatures applied in succession. Implementation
of the PAdES is rather portable since any compatible PDF file reader or editor will
work with the signatures in a similar way - signature created in one should be easily
verifiable in any other. XAdES and CAdES, however, are usually tied to specific
implementation or standard that is built on top of them.

Standard Usable with Format Multi-signature Appearance
PAdES PDF embedded yes, sequential supported
XAdES XML, any XML yes depends on the usage
CAdES any binary yes depends on the usage

Table 1.1: Overview of standards PAdES, XAdES, and CAdES.

The ability to keep signed documents valid for a prolonged period of time is covered
in these standards under optional Long-Term Validation (LTV) that allows archiving
of documents for many years, possibly decades. If enabled, a trustworthy timestamp
is required as validity is verified for the time the signature (and therefore timestamp)
was created. The expiration time is then limited by the validity of the timestamp
certificate. Different profiles - levels - for different standards can be seen in Table 1.2.

Level XAdES CAdES PAdES
Basic XAdES-B CAdES-B AdES-B
B with Timestamp XAdES-T CAdES-T PAdES-T
T with Long Term Data XAdES-LT CAdES-LT PAdES-LT
LT with Archive timestamp XAdES-LTA CAdES-LTA PAdES-LTA

Table 1.2: Different profiles - levels - for standards PAdES, XAdES, and CAdES.

17

2 Review of existing software

We focus only on simple applications made mostly for the signing of the documents.
During our review, we have used several PDF files that we have tried to sign using QES
available on the SR eID. We have tried to include software of all types in our review,
preferring the most popular, locally available ones, since those should be prepared
for the use with the SR eID. Excluded are all complex applications with advanced
features and high price tag. We have picked one open-source desktop application,
one web application - Software as a Service (SaaS), one PDF viewer, one simple
paid desktop application, and one commercial desktop application with free version.
Criteria we focus on are:

1. Licensing - is it freely available - both in terms of money and source code -
best case is open-source; worst case is paid proprietary software.

2. Cross-platform compatibility - is it available for users of all major desktop
platforms - best case is availability on Windows, macOS, and Linux; worst case
is availability only on one platform.

3. Localization - is it translated and does it display data like dates in local format
- best case is availability at least in English and Slovak language; worst case is
availability only in one language with no support for localization of dates, etc..

4. File support - does it support different file formats and sizes - best case is sup-
port for all file formats with sensible size up to 50 MB; worst case is availability
only for one file format or strict limits on the file size.

5. Easy setup - does it require non-trivial setup to use the SR eID - best case is
no setup required; worst case is possibly demanding setup or troubleshooting.

6. Flexibility - how much logic can be customized - best case is various options
for signature format, signature policy, used algorithms or timestamping config-
uration; worst case is none or almost none customization.

18

7. Built-in verification - is the verification of signatures available in the same
software - best case is ability to verify various signature types; worst case is no
support for signature verification.

8. Extensibility - is it extensible by the community - best case is it is prepared
for easy extensibility in terms of functionality and localization; worst case is no
extensibility.

We have summarized our findings in Table 2.1. Value XXmeans best-case scenario,
no value worst-case scenario, and valueXsomewhere in between - partially or depends.

lic
en
sin

g
cr
os
s-p

lat
for

m
loc

ali
za
tio

n
fil
e s

up
pp
or
t

ea
sy

se
tu
p

fle
xib

ili
ty

bu
ilt
-in

ve
rifi

ca
tio

n
ex
te
ns
ib
ili
ty

JSignPdf XX X XX X

zep.disig.sk X XX XX X XX XX

Acrobat DC X X XX X XX XX

D.PDF Signer X XX X

Podpisuj.sk X XX X XX XX X XX

Table 2.1: Comparison of existing software.

2.1 Desktop application JSignPdf

JSignPdf is an open-source Java application that adds digital signatures to PDF
documents. It can be used as a standalone application or as an add-on in OpenOffice.
We focus only on standalone use.

The application consists only of one window, which makes it very simple at first
sight. The very first input - Keystore type - can be harder to understand for the
basic user since it contains over a dozen options in the form of abbreviations like
CASEEXACTJKS or PKCS12-DEF-3DES-40RC2. The default value is WINDOWS-
MY, however, which is what is exactly required for the SR eID. Application has a
toggle for the Advanced view, which is off by default, but it is necessary to turn it on
if we want to choose the correct key. On some of the computers, we were not able to
see the key from the eID. On others, it took a while and several pressing of a button

19

Figure 2.5: Screenshot of the JSignPdf version 1.6.4.

to load them. The correct key was not the first, preselected key in the form of Name
Surname, but the second Name Surname (1). With everything set up correctly, the
application was successfully able to attach a QES. Even though the application looks
pretty simple, it is still pretty flexible with its options regarding the used algorithms,
TSA, OCSP, or CRL. That being said, it is available only in English, and we have
also noticed issues with the diacritics as you can see in Figure 2.5 - "Jakub Ďuraš" is
displayed as "Jakub Ïura".

2.2 Web application zep.disig.sk

Web application zep.disig.sk is a pro-bono SaaS from company Disig a.s. for user-
friendly document signing and validation utilizing the currently bundled software with
the SR eID.

The process to sign or validate is very simple and straightforward. There are,
however, several potential problems. Since this is a web service, documents have to be
uploaded. Any confidential or personal data are, therefore, shared with the company.
Additionally, we have no way of knowing "how things work" in the background. File
support is pretty extensive, but there is a strict restriction on file size at 4 MB - larger
files such as documents scanned at home will possibly not be accepted. The website
also provides valuable information, and the company seems to be open to questions
from users - all completely for free.

20

Figure 2.6: Screenshot of the zep.disig.sk.

2.3 PDF viewer Adobe Acrobat Reader DC

One of the most popular PDF viewers from the company Adobe - Acrobat Reader
DC - can also verify and add signatures to PDF files.

Figure 2.7: Screenshot of the Adobe Acrobat Reader DC.

Using the QES is slightly harder to find in the Adobe Acrobat Reader. It is not
available under Signing, but More Tools where it is called Certificates. Setup of the
certificate for use with the SR eID can be a hit or miss. On one of our computers,
the application would not include a certificate from the SR eID, and we had to go
through a process of adding the PKCS #11 library manually. That meant we had
to go through several steps and windows and disable the protected mode option. The
setup of this application may not be straightforward and may require professional help.

21

On another computer, we were simply able to choose from the list of the available
certificates. That being said, everything is correctly localized, and being one of the
most used applications of its kind, it is very easy to search for help in situations like
this. Outside of that, verification of signatures is part of the application and is very
responsive and flexible. The application is proprietary and can not be extended or
verified. It is available only on the Windows and macOS.

2.4 Commercial application D.PDF Signer

Application D.PDF Signer is a paid proprietary desktop application.

Figure 2.8: Screenshot of the D.PDF Signer.

Just like the zep.digis.sk, D.PDF signer utilizes the currently bundled software with
the SR eID. It is straightforward and flexible. On the other hand, it lacks support
for platforms other than Windows. Additionally, the application is only partially
localized to English. It does not support file formats other than PDF and has no
built-in signature verification.

2.5 Commercial desktop application Podpisuj.sk

Application Podpisuj.sk is a paid proprietary desktop application with a free version
developed locally in Slovakia.

The Podpisuj.sk can be downloaded for all three major desktop platforms. It does
not rely on the software bundled with the SR eID. It is relatively easy to use and
comes fully preconfigured so it can be used with the SR eID right away. Flexibility

22

Figure 2.9: Screenshot of the Podpisuj.sk.

is not as great as with some other applications we have reviewed, and some options
(like custom TSP) require one of the paid versions. Not everything is fully localized
- especially the website, and any documentation we could find was available only in
Slovak. Therefore it may be impractical for foreigners. It is not possible to extend it,
but it is easy to use different tokens for signing.

23

3 Results

3.1 Desktop software

We have developed an open-source, cross-platform desktop software with focus on
the modularity, architecture, usability, localization, automated testing with overall
automation, and extensibility by the community. Our knowledge on these topics
comes from Ian Sommerville’s [14]. We try to consider specifics of the open-source
software as they are sometimes defined in Chapter 7 of [18].

3.1.1 Usability

Our main objective for the usability was to provide the end-users with an easy to use,
straightforward UI, and to make as many decisions for them as possible. We have
tried to achieve this by using as little controls as possible and by trying to have only
one main control that we expect the user to interact with.

We hide all unnecessary information and choose a most likely default without
asking users to choose from options that could confuse them, or would require them
to study to make informed decisions. We assume this will mean the users will be more
confident as there will be fewer steps where they were not sure if they have made the
right choice.

Since we are developing this application as a cross-platform desktop application
available under a permissive open-source license, it should be usable by as many people
as possible.

3.1.2 Localization

We have also made the application easily translatable and try to display data like
dates in the local format. When the application is started, we try to detect the locale
of the user and set it as a default language. If we do not yet support the locale of

24

Figure 3.10: Screenshot from the main screen of our application Octosign.

the user, we default to the English language. At the time of writing, our application
is fully translated in three languages: English (source language), Slovak, and Czech.
Additional languages - German and Spanish - are actively being developed.

The process of content translation is mostly automated. We start with the au-
tomated extraction of the source strings from the code of the main module and files
provided by the backends. Next, we manually include the extracted source strings in
the commit to our versioning control - we have retained manual control over this to
prevent a noise that automated commits could make. On push to the hosted reposi-
tory, a localization platform Transifex1 automatically pulls and process the updates.
These phrases can then be translated by anybody using the User Interface (UI) of the
Transifex platform to make it easily accessible. Once the changes are made on the
Transifex platform, it automatically creates a pull request on our hosted repository
with the changes made to that particular language. As we explain in detail in Section
3.1.6, part of the build process is to incorporate these in the application.

1Transifex is a SaaS localization platform free for OSS, see https://www.transifex.com/.

25

3.1.3 Modularity

Although we focus on the use with the SR eID, we want the application to be extensible
by the community and ready for experimentation with new ways of signing. That is
why we have designed our application to be a fully modular platform.

The main module is an Electron2 application written in TypeScript3. This module
features simple UI and abstraction around modules for signing that we call backends.
It handles all of the communication with the user for the backend and tries to simplify
development of the backends as much as possible.

Signing modules - backends - are separate command line interface (CLI) appli-
cations written in any programming language. They are responsible for the actual
document manipulation - signing and verification.

The main module loads all available backends at runtime. Once the user decides
to verify or sign a file, they are executed as CLI applications.

Communication between the main module and backends is in plaintext over the
standard streams (STDIO) - standard input (STDIN), output (STDOUT), and error
(STDERR). To make sure we have correctly documented and easily accessible way for
backend development, we have prepared a Backend specification that specifies what is
required of the backend, what is optionally supported, and the format of the inputs,
outputs, and error handling.

Figure 3.11: Modules of our application and their communication.

There are several advantages to this approach. Firstly, we can write backends in
any language that suits us the most. For example, our backend that allows signing

2Electron is a framework allowing the development of desktop software using web technologies.
3TypeScript is statically typed superset of JavaScript that compiles to JavaScript.

26

documents with the signatures compliant with the EU eIDAS directive is written in
Java because it is based on a library from EU - DSS - also written in Java. We
expect most of the languages have APIs for the consumption of the standard streams
with excellent portability across different desktop platforms. Secondly, since we are
technically working on separate applications, they can be written by different people
under a different license. That also means we can easily swap the main module or
any of the backends for use in different environments or different bundles. Thirdly,
together with the choice of using standard streams, it means that anyone can quickly
start the development of a new backend. Writing to the standard output stream in
CLI application is one of the first things developers usually learn - so-called "Hello
World" applications. It usually should not involve studying any required third-party
libraries, and authors can choose the language they are most familiar with.

3.1.4 Signing backends

Following our specification, each backend is required to provide a configuration file
and follow the communication protocol.

Configuration files are written in YAML4 and contain basic information about the
backend like name, description, repository, version, author, or license. It also contains
two properties defining what command should be executed and with what parameters
to execute the backend, and build the backend, respectively.

Backend is always called with operation as the first argument, followed by an
additional argument that differs between operations. The backend should be stateless
- that means it should not be influenced by any state it would save like info about
what files it signed. All communication is in UTF-8 encoded plaintext. It needs
to implement operations meta, sign, and verify that are run using the configured
executable, for example, ./backend-executable meta, or, ./backend-executable

sign /home/path.pdf.
Operation meta is called to get info about its availability, options, and supported

file types. This allows the backend to check the platform, available software of the
user, etc. and make the decision based on that.

Operation sign and verify are called to sign or verify the file with the absolute
path to the file. The main module never sends anything over the STDIO unless
it’s asked to do so from the backend. That means the backend acts as a master

4YAML is a human-readable data serialization language, see https://yaml.org/.

27

and the main module as a slave. The UI can end the process if any unexpected
situation arises and displays an error. The backend can during those two operations,
at any moment: write error to the STDERR that is immediately displayed; prompt
for additional information by writing to the STDOUT; get the current value of any
option by writing to the STDOUT.

Ending the process with the exit code 0 signals success. Some operations expect
a result on the STDOUT before the process exits. If code other than 0 is used, the
backend should always send an error message to the STDERR.

Messages exchanged via the STDIN and STDOUT can be sometimes polluted by
different libraries used on either part, so they are distinguished from the rest by using
the following delimiter:

---TYPE---

any information exchanged in the appropriate format

---TYPE---

TYPE here is replaced by PROMPT, GETOPTION, or RESULT based on the type of the
message. Such messages should be written in one chunk and flushed. Communication
on the STDERR is accepted and displayed as-is.

Prompt is used to interactively ask for more information from the user. The
backend can ask to get an absolute path to the output file, absolute path to opened
file, text, password, image (drawn or picked), or position and width of the signature
that will be placed in the UI by the user.

Getting an option is used to ask for the current option value that can be set in
the UI on the Settings screen. The option is automatically prefixed on the main
module for each backend so it can not retrieve options from other backends to prevent
collisions and security issues.

Such communication protocol allows using any language that can simply work
with the STDIO without a need for knowledge or third-party libraries to work with
serialized data in formats like JSON. The backend does not have to use any regular
expressions but always simply reads the whole line. It is supposed to be as simple as
possible for newcomers.

The current version of the full specification is available at https://github.com/

durasj/octosign/wiki/Backend-specification.

28

DSS eIDAS backend

The backend that we call advanced electronic signature, is a Java CLI application
that uses Digital Signature Service (DSS) framework. The DSS is a project from the
Connecting Europe Facility (CEF) Digital, a European Union fund for pan-European
infrastructure investment. It is one of the Building Blocks, as they are called on their
website, which helps to create and verify electronic signatures in line with European
standards. Its documentation, available in [21], also provides general information
about the used standards.

Source of the private key is configurable, and we can use PKCS #11 to utilize
those in HSMs, PKCS #12 to work with key stores in files, or Microsoft Crypto API
that provides an abstraction on different sources. It supports all standards mentioned
in Chapter 1.2.3 in various configurations. Since we are trying to simplify it down for
the user, when signing, we automatically choose to use PAdES when signing PDF,
XAdES when signing XML with enveloped signature, and ASiC with CAdES for all
other file formats. This could be further extended in the future, so the user can
manually choose the preferred standard, container type, or signature policy.

Signature verification, however, works with all different combinations that are
detected automatically. During the verification, we construct a trusted list of root
certificates from the LOTL. Different lists for different countries are hosted individ-
ually on each countries servers. For better performance and reliability when there is
an outage on those servers, we proxy requests through CloudFlare5 Content Deliv-
ery Network (CDN) to distribute cached files that are periodically downloaded and
stored on the Amazon Web Services6 (AWS) infrastructure using the AWS Lambda
and AWS S3.

The backend currently supports configurable TSP URL, so any TSP following the
RFC 3161 can be utilized as long as it does not require authentication. Authenti-
cation is usually done using a name and password or using a digital signature but
is currently not supported. This could hinder use with qualified TSPs that usually
require authentication.

One issue we were facing when working with the DSS framework is the assumption
that it is often implemented on the server-side as a service. This meant that some
APIs are meant to be used in an environment where they are started once, and then

5CloudFlare is a CDN provider, see https://www.cloudflare.com/.
6Amazon Web Services is a cloud provider with various services, see https://aws.amazon.com/

what-is-aws/.

29

they are available or can be run periodically several times a day. This is obviously
not the case with our architecture since we always run it only when some operation
is required, and the application is stopped again. We assume this issue can come up
during the development of other backends as well and may require a certain level of
flexibility from the developer to tackle them.

Image backend

To provide users with the ability to sign using a simple image saved on the computer,
which is probably a scanned signature, or signature drawn directly in our application,
we created what we call simple image signature backend. It is useful when users do
not have the resources required to sign the document using the QES, or in situations
when they would rather not do so.

It is written in Go and utilizes a library for manipulation of PDF files. Its purpose
is just to ask the main module for the signature file and its position. Therefore, this
backend utilizes prompt functionality of the communication protocol with options
image and position.

Option to draw the signature in the application is using a splining algorithm with
a variable stroke that calculates the time it takes to travel between two points. Such
signatures mimic one of the features of the handwritten signatures from [22] that are
used to verify the authenticity of handwritten signatures. That being said, we are not
aware of any proof that this approach has any practical benefits outside of aesthetics.
This approach was outlined on the Square Engineering Blog7. There is a JavaScript
implementation for the browser called Signature Pad8.

3.1.5 Architecture of the main module

Our main module is the most complex one. Electron applications have a main
thread that is running a Node.js9 and a UI thread running the relevant part of the
Chromium10. Their communication is done via inter-process communication (IPC)
and allows access to the Node.js APIs in the UI thread. Considering the JavaScript is

7Smoother Signatures article available archived at https://web.archive.org/web/

20150211220342/http://corner.squareup.com/2012/07/smoother-signatures.html.
8Signature Pad library is available at https://github.com/szimek/signature_pad.
9Node.js is a JavaScript runtime for use outside of the browser with easier access to the OS APIs.

10Chromium is a popular open-source browser project, see https://www.chromium.org/Home.

30

interpreted at runtime, we are exposing ourselves to potential attacks (mostly XSS11).
To reduce the attack surface, as Node.js allows easy access to many APIs like full ac-
cess to the filesystem, we have fully separated the UI thread and main thread. Our
work was influenced by knowledge from [19] and [20].

The main thread is focused only on the communication with the backends and
provides the only absolutely necessary functionality for the UI. They are connected
by a very thin level of abstraction - a set of functions that are bound on the window
object during the initialization by the main thread and, when called from the UI
thread, automatically communicate via IPC. All of the UI code and main thread
code is, therefore, also fully portable and could also be used in a different setup - for
example, in a web application or mobile application. We would be mostly required to
only change the thin level of abstraction - implement the interface we have created on
the window object. Furthermore, it allows us to develop the UI in the browser with a
mocked main thread and also allows for easy UI testing, which we go over in Section
3.1.6.

3.1.6 Testing and automation

When approaching automated testing, we have decided to implement the testing pyra-
mid as defined by Mike Cohn in [15]. One of the implementations of this idea was
done by the Ham Vocke in [16]. It is implemented at a scale at Google, which explains
their positive experience with it in [17]. Following this approach, we write three types
of tests: end-to-end, integration, and unit tests. The ratio of these types of tests
should form a pyramid where the heavy bottom is formed by the unit tests, followed
by a smaller set of component tests forming the middle of the pyramid, and a small
set of end-to-end tests forming the tip of the pyramid. The motivation behind this
approach is to write more tests that are faster and break less often due to better
isolation, as opposed to tests that are slower and break more often.

In our case, we have decided to write unit tests in Jest testing both the UI and
main thread code, component tests in Jest for the main thread and Cypress for the
UI thread combined with the Percy, and end-to-end tests as Spectron tests which run
and interact with the actual distributables (executable files). We are able to fully
isolate each type of tests because of our architecture that allows easy mocking. We
explain the architecture in Section 3.1.5.

11XSS means Cross-site scripting, see https://owasp.org/www-community/attacks/xss/.

31

Our code is kept in a git repository12 hosted at Github and is a source for the
Continuous Integration (CI) and Continuous Delivery (CD) pipeline. For the CI/CD,
we are using Azure Pipelines specifically, that are free for OSS. On each push, apart
from setting up the environment, we perform static analysis on the code checking the
type safety using TypeScript, code style using the ESLint and Prettier, code quality
using the CodeClimate.com, and check for potential vulnerabilities using the Snyk.io.
As for the mentioned automated tests, we run the unit and components tests and
monitor the coverage using the Codecov.io. In the case coverage would be significantly
negatively impacted, the Pull Request (PR) is blocked from being merged. Backends
are referenced in the same repository by using the git submodules, which allows us to
simplify the development and build process. Build process build individual backends,
the main thread, UI thread, and API code, and uploads bundled distributable files for
all platforms back to the Github. The whole process runs for each platform - Windows,
Linux, and macOS - separately; therefore, there is no need for cross-compiling and
running of platform-dependent tools in virtualized environments. Publishing of the
new release is then done by saving the release in the Github.

We had to overcome issues we have faced with the performance of the Github
relases - mainly apparent bandwidth restrictions. We have deployed an AWS lambda
that is called when a new release is published on Github and sends a message to AWS
Simple Queue Service (SQS). Another AWS Lambda is triggered on such message, and
it downloads all distributable files and creates a metafile with information about the
release in AWS S3. These files are then served cached over the CDN from CloudFlare.

3.1.7 Comparison with existing software

Using our review from Chapter 2, we have compared our application in Table 2.1.
ValueXXmeans best-case scenario, no value worst-case scenario, and valueXsomewhere
in between - partially or depends.

Our software is available under a permissive license (see Section 1.1.3 for why
this matters), supports all major desktop platforms, available in several locales, with
support for practically all file types and sizes, with built-in verification and easy
extensibility.

In the future, we can improve our application to be easier to set up for more users
and be more flexible in the configuration of TSPs or used signature policy. That

12Repository is available at https://github.com/durasj/octosign.

32

lic
en
sin

g
cr
os
s-p

lat
for

m
loc

ali
za
tio

n
fil
e s

up
pp
or
t

ea
sy

se
tu
p

fle
xib

ili
ty

bu
ilt
-in

ve
rifi

ca
tio

n
ex
te
ns
ib
ili
ty

JSignPdf XX X XX X

zep.disig.sk X XX XX X XX XX

Acrobat DC X X XX X XX XX

D.PDF Signer X XX X

Podpisuj.sk X XX X XX XX X XX

Our - Octosign XX XX XX XX X X XX XX

Table 3.1: Comparison of existing software with our software.

being said, we need to consider each configurable functionality we add as it increases
complexity which could mean our software is harder to understand.

3.2 Website

Goal of the website is to both support the application in the form of Download page
and Help page and provide a to provide a general information on electronic signatures.
The website is, at the time of writing, available in English and Slovak language.

Figure 3.12: Home page of the octosign.com website.

33

3.2.1 Downloads

Downloads are available for each major desktop platform in a format suitable for
installation or integration in the operating system. For Windows, we are distributing
an EXE installer working on all supported 64-bit Windows versions. For Linux, a
portable AppImage and a DEB package for Debian-like distributions. For macOS, a
DMG disk image.

All of the distributables originate from the Github as assets of a release, where
they are uploaded by the CI (see Section 3.1.6). Each release is tied to a tag on the
master branch, where each commit has to be signed using a recognized PGP key. In
turn, we have some level of confidence source code used for the distributables comes
from one of the authors.

To improve on this further, we tried to do a code-signing for each release using
a trusted way for each platform. On macOS, this means enrolling in the Apple
Developer Program that requires an annual fee and installation of signing certificates.
Additionally, it is necessary to notarize the application for use on macOS. Notarization
is an automated process required by Apple to prove that the application does not
contain any malicious code and is properly signed and configured. If the application
is not notarized, Gatekeeper will warn the user about the potentially unsafe software.
On modern versions of Windows, applications that are not code-signed can trigger a
warning or, depending on the settings, even completely prevent the user from using
software that is not code-signed using a certificate that is cosigned with a trusted root
certificate. Certification for individuals on the macOS seems to be fully automated,
does not involve lengthy verification, and costs 99 USD a year. Certification on
Windows is offered by various trusted third parties like DigiCert.com that we have
used and involves lengthy, partially automated verification at a price starting from 60
USD a year. At the time of writing, there does not seem to be any service offering
code-signing certificates to OSS for free. We were not able to finish the process on
time for the publishing of this thesis - we feel like this process could be improved in
the future for OSS.

3.2.2 Information and help

Our website provides a simple help page with different use cases that should allow
users to start using the application quickly. It also contains a brief explanation of
more advanced features of the application like settings.

34

Another issue we try to solve with the website is a lack of understanding of elec-
tronic signatures. Some users do not know if they are a viable alternative, why is
that the case, and how they should be used properly. We also plan to provide more
detailed information for people who are curious about the specifics of the signatures
used in the eIDAS scheme.

These pages are written in markdown - a lightweight markup language, making
it more accessible for editing by the community that does not need to understand
specific technologies used to display content on the website.

3.2.3 Technologies

From the technological point of view, the website is a Single Page Application (SPA)
using Gatsby written in React. Even though it is a SPA, it is prerendered to static
HTML and CSS files that are served from CDN, which improves performance and
allows for better Search Engine Optimization (SEO).

The website is using CI/CD services from Netlify.com that is also responsible for
distribution using a CDN. Each push on the master branch triggers a build and deploy
on the live website. Each PR has a deploy preview that is basically a unique link that
shows proposed changes built and deployed on the web. Such approach allows for
easy iteration and allows others to contribute the content in markdown files without
a need to build the website locally as they can see results as soon as they open the
PR.

Different language mutations are denoted by using a suffix, for example, the home
page is written in English and Slovak using file names home.en.tsx and home.sk.tsx.
Same applies for content written in markdown, for example, help page on basic usage
is written in files basic.en.md and basic.sk.md. The URL of the website contains
language code of the current language if it is other than English, for example, the
download page is available in English on path /download and in Slovak on path
/sk/download. By switching the language using the selector on the upper right, the
URL changes to the required format.

35

Conclusion

We verified that the main legal and technical preconditions should be met for the
use of electronic signatures. We therefore believe they are a viable alternative to
handwritten signatures.

We did a review of the existing software, focusing on licensing, cross-platform
compatibility, localization, file support, ease of setup, flexibility, verification ability,
and extensibility. We identified the positive and negative sides of the current im-
plementations and found a gap in the software for signing using qualified electronic
signatures.

Therefore, we proposed a simple open-source software platform that aims to be
straightforward for the end-user by choosing the most likely defaults and reducing the
amount of information the user has to interact with. Also, we made our application
easy to translate using a third-party web UI where anyone from the community can
contribute translations. Our application is available in three languages: English, Slo-
vak, and Czech, with German and Spanish in translation. It is also fully modular,
dividing the main module that contains the UI and modules performing the docu-
ment manipulation. We implemented a module for signing using qualified electronic
signatures that follow European standards and should be compliant with European
law, and a module that allows signing using a scanned or drawn signature. The pro-
posed software is a platform on which others can quickly build new ways of signing
documents complying with different laws or basing further research. From a software
engineering perspective, the implementation is robust, and we covered testing and
automation in connection with Electron applications like ours. On the other hand,
there is some room for improvement in flexibility and ease of setup of our software. We
also created a supporting website that provides download links for all major desktop
platforms, a help page, and general information on electronic signatures. Our project
should be open to people from different countries, speaking different languages, and
open for contributions from people with various skills - not just from programmers.

36

Resumé

Overili sme, že hlavné predpoklady pre použitie elektronických podpisov by mali byť
naplnené. Veríme, že sú preto schodnou alternatívou pre vlastnoručné podpisy.

Preskúmali sme existujúci softvér so zameraním na licenciu, kompatibilitu medzi
platformami, lokalizáciu, podporu súborov, ľahkosť nastavenia, flexibilitu, schopnosť
overiť podpisy a rozšíriteľnosť. Identifikovali sme pozitívne a negatívne stránky súčas-
ných implementácií a našli sme medzeru v softvéri na podpisovanie pomocou kvali-
fikovaných elektronických podpisov.

Preto sme navrhli jednoduchú otvorenú softvérovú platformu, ktorá sa snaží byť
priamočiara pre koncového používateľa výberom pravdepodobných predvolených hod-
nôt a znížením množstva informácií, s ktorými sa používateľ stretáva. Taktiež sme
uľahčili preklad našej aplikácie pomocou webového rozhrania tretej strany, s ktorým
môže ktokoľvek z komunity pomôcť prekladmi. Naša aplikácia je dostupná v troch
jazykoch: angličtine, slovenčine a češtine s nemčinou a španielčinou v prekladaní. Je
tiež plne modulárna, kde hlavný modul obsahuje používateľské rozhranie a niekoľko
modulov vykonáva manipuláciu s dokumentmi. Implementovali sme modul na pod-
pisovanie pomocou kvalifikovaného elektronického podpisu, ktorý spĺňa európske štan-
dardy a mal by byť v súlade s európskymi zákonmi a modul, ktorý umožňuje pod-
pisovanie pomocou naskenovaného alebo nakresleného podpisu. Navrhovaný softvér
je platforma, na ktorej môžu ostatní rýchlo vybudovať nové spôsoby podpisovania
dokumentov v súlade s rôznymi zákonmi alebo založiť ďalší výskum. Venovali sme
sa testovaniu a automatizácii vývoja Electron aplikácií, takže implementácia je ro-
bustná aj z pohľadu softvérového inžinierstva. Na druhej strane existuje priestor na
zlepšenie flexibility a jednoduchosti prvotného nastavenia nášho softvéru. Vytvorili
sme tiež podpornú webovú stránku s možnosťou stiahnutia pre hlavné počítačové ope-
račné systémy, užívateľskou príručkou a všeobecnými informáciami o elektronických
podpisoch. Náš projekt je otvorený ľuďom z rôznych krajín, rozprávajúcich rôznymi
jazkymi a zmenám od ľudí s rôznymi zručnosťami - nie len programátorom.

37

Bibliography

[1] Act No. 40/1964 Coll. Civil Code

[2] Act No. 513/1991 Coll. Commercial code

[3] Act No. 323/1992 Coll. Notary Law

[4] REGULATION (EU) No 910/2014 OF THE EUROPEAN PARLIAMENT AND
OF THE COUNCIL, OJ L 257, 28.8.2014, p. 73–114

[5] Council Directive 91/250/EEC of 14 May 1991 on the legal protection of computer
programs, OJ L 122, 17.5.1991, p. 42–46

[6] MASON, Stephen, 2017. Electronic Signatures in Law: Fourth Edi-
tion. London: University of London. ISBN 978-1-911507-01-7. Available at:
https://humanities-digital-library.org/index.php/hdl/catalog/view/

electronicsignatures/1/86-1

[7] LAURENT, Andrew, 2008. Understanding Open Source and Free Software Li-
censing. Sebastopol: O’Reilly Media. ISBN 978-0596005818.

[8] PAAR, Christof and Pelzl, Jan, 2009. Understanding Cryptography - A Text-
book for Students and Practitioner. Berlin: Springer. ISBN 978-3-642-04100-6.

[9] ROSULEK, Mike. The Joy of Cryptography [online]. Oregon: School of Electri-
cal Engineering & Computer Science, Corvallis, Oregon, USA [cit. 2020-04-18].
Available at: http://web.engr.oregonstate.edu/rosulekm/crypto/crypto.

pdf

[10] RIVEST, R. L., SHAMIR, A., and ADLEMAN, L., 1978. A method for
obtaining digital signatures and public-key cryptosystems. In: Communications of
the ACM, 21(2):120–126, February 1978.

38

[11] ETSI TS 102 778-1 V1.1.1 2007-07. PAdES Overview - a framework document
for PAdES. Sophia Antipolis: European Telecommunications Standards Insti-
tute. Available at: https://www.etsi.org/deliver/etsi_ts/102700_102799/

10277801/01.01.01_60/ts_10277801v010101p.pdf

[12] ETSI TS 101 903 V1.4.2 2010-12. XML Advanced Electronic Signatures (XAdES).
Sophia Antipolis: European Telecommunications Standards Institute. Available
at: https://www.etsi.org/deliver/etsi_ts/101900_101999/101903/01.04.

02_60/ts_101903v010402p.pdf

[13] ETSI TS 101 733 V2.2.1 2013-04. CMS Advanced Electronic Signatures (CAdES).
Sophia Antipolis: European Telecommunications Standards Institute. Available
at: https://www.etsi.org/deliver/etsi_ts/101700_101799/101733/02.02.

01_60/ts_101733v020201p.pdf

[14] SOMMERVILLE, Ian, 2016. Software Engineering, 10th Edition. Harlow:
Pearson Education. ISBN 978-0-13-394303-0.

[15] Cohn, Mike, 2009. Succeeding with Agile. Boston: Addison-Wesley Professional.
ISBN 978-0-32-166053-4.

[16] Vocke, Ham, 2018. The Practical Test Pyramid [online]. Available at https:

//martinfowler.com/articles/practical-test-pyramid.html

[17] Wacker, Mike, 2015. Just Say No to More End-to-End Tests [online]. Avail-
able at https://testing.googleblog.com/2015/04/just-say-no-to-more-

end-to-end-tests.html

[18] FOGEL, Karl, 2019. Producing Open Source Software [online]. [cit. 2020-04-
21]. Available at: https://producingoss.com/en/index.html

[19] HAVERBEKE, Marijn, 2018. Eloquent JavaScript, 3rd Edition. San Fran-
cisco: No Starch Press. ISBN 978-1593279509.

[20] SIMPSON, Kyle, 2020. You Don’t Know JS Yet (book series) - 2nd Edition
[online]. Available at: https://github.com/getify/You-Dont-Know-JS

[21] Vandenbroucke, P. and Beliakov, A. [online]. Digital Signature Service.
Luxembourg: CEF Digital [cit. 2020-05-16]. Available at: https://ec.europa.

eu/cefdigital/DSS/webapp-demo/doc/dss-documentation.html

39

[22] Hafemann, G. L., Sabourin, R., and Oliveira, S. L., 2017. Offline Hand-
written Signature Verification - Literature Review. In: 2017 Seventh International
Conference on Image Processing Theory, Tools and Applications (IPTA), pp. 1-
8. Montreal: IEEE. ISBN 978-1-5386-1842-4. Available at: https://arxiv.org/

abs/1507.07909

40

Appendices

An up-to-date version of each developed asset is available online on the URL specified
in the list. The version available at the time of writing is part of the attached CD,
and the user manual is also available as Appendix A.

List of the most important assets available online and on the CD:

• Software Octosign - repository with source code: https://github.com/durasj/

octosign.

• Software Octosign - released distributable files: https://github.com/durasj/

octosign/releases.

• Signing backend DSS - repository with source code: https://github.com/

durasj/octosign-dss.

• Signing backend Image - repository with source code: https://github.com/

durasj/octosign-image.

• Website octosign.com - repository with source code: https://github.com/

durasj/octosign-website.

• Documentation - short user manual: https://octosign.com/help/basics.

• Documentation - signing backend specification: https://github.com/durasj/

octosign/wiki/Backend-specification.

41

A User manual

A.1 Downloading and installing the application

Open the subpage Download on website https://octosign.com where you can down-
load the application by clicking on the button for your operating system. After the
download is complete, open the file and follow the instructions.

A.2 Signing the document

First, it is needed to select a document. To select a document, click on the button
SELECT FILES or drag and drop your document on the application. The recom-
mended document type is PDF, although other file types are supported as well. After
selecting the document, a card with the document name will appear just like in the
picture.

Figure A.13: Screenshot with unsigned document.

42

Signing is possible using several different types of signatures visible in the upper
part of the screen. The default type is Advanced electronic signature, if available,
else Simple image signature. When signing with an image, there is only a drawn or
picked signature image placed on the PDF. When signing with an advanced electronic
signature, it is possible to use a qualified electronic signature. To sign a document,
press the button SIGN visible on the document card. Follow the instructions, and
after the signing is successful, the document will be marked as Signed.

Figure A.14: Card with the signed document.

A.3 Verifying of document signature

Verification of the document signature is automatically started after the document is
selected, and it does not have to be triggered manually.

Figure A.15: Card with the document that is being verified.

After the verification is completed, the status of the document will be visible
on the card of the document, it can be: Signed, Unsigned, Invalid, Unknown, and
Indeterminate.

43

If there is at least one signature attached to the document, it is possible to see
more information about it by clicking on the button OPEN SIGNATURE DETAILS.

A.4 Settings

Settings can be opened by clicking on the text Settings in the lower right corner of
the application.

It is possible to set the language and options specific for the type of the signature.

Figure A.16: Screenshot with open Settings.

Options available for the Advanced electronic signature backend are:
PKCS #11 Library Path - The path is automatically prefilled if there is a

supported known software installed on the computer. If not, it is possible to fill it
manually with the path that you can get from the supplier of the software bundled
with your device. The path needs to lead to a library compliant with the PKCS #11
standard in a 64-bit version.

Timestamping Server URL - The URL is automatically prefilled with value
"http://timestamp.digicert.com". In the case you would like to use your own times-
tamping server, feel free to change it, but please make sure to type in the full URL
address, including the protocol ("http://" or "https://").

44

